Dynactin function in mitotic spindle positioning.
نویسندگان
چکیده
Dynactin is a multisubunit protein complex necessary for dynein function. Here, we investigated the function of dynactin in budding yeast. Loss of dynactin impaired movement and positioning of the mitotic spindle, similar to loss of dynein. Dynactin subunits required for function included p150(Glued), dynamitin, actin-related protein (Arp) 1 and p24. Arp10 and capping protein were dispensable, even in combination. All dynactin subunits tested localized to dynamic plus ends of cytoplasmic microtubules, to stationary foci on the cell cortex and to spindle pole bodies. The number of molecules of dynactin in those locations was small, less than five. In the absence of dynactin, dynein accumulated at plus ends and did not appear at the cell cortex, consistent with a role for dynactin in offloading dynein from the plus end to the cortex. Dynein at the plus end was necessary for dynactin plus-end targeting. p150(Glued) was the only dynactin subunit sufficient for plus-end targeting. Interactions among the subunits support a molecular model that resembles the current model for brain dynactin in many respects; however, three subunits at the pointed end of brain dynactin appear to be absent from yeast.
منابع مشابه
Dynein-driven mitotic spindle positioning restricted to anaphase by She1p inhibition of dynactin recruitment.
Dynein is a minus-end-directed microtubule motor important for mitotic spindle positioning. In budding yeast, dynein activity is restricted to anaphase when the nucleus enters the bud neck, yet the nature of the underlying regulatory mechanism is not known. Here, the microtubule-associated protein She1p is identified as a novel regulator of dynein activity. In she1 Delta cells, dynein is activa...
متن کاملIntegrin-Linked Kinase links Dynactin-1/Dynactin-2 with cortical Integrin receptors to orient the mitotic spindle relative to the substratum
Cells must divide strictly along a plane to form an epithelial layer parallel to the basal lamina. The axis of cell division is primarily governed by the orientation of the mitotic spindle and spindle misorientation pathways have been implicated in cancer initiation. While β1-Integrin and the Dynein/Dynactin complex are known to be involved, the pathways linking these complexes in positioning m...
متن کاملNuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures
Mitotic spindle orientation is used to generate cell fate diversity and drive proper tissue morphogenesis. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that cortical dynein/dynactin was sufficient to generate forces on astral microtubules (MTs) to orient the spindle, with NuMA acting as a passive tether. I...
متن کاملMISP is a novel Plk1 substrate required for proper spindle orientation and mitotic progression
Precise positioning of the mitotic spindle determines the correct cell division axis and is crucial for organism development. Spindle positioning is mediated through a cortical machinery by capturing astral microtubules, thereby generating pushing/pulling forces at the cell cortex. However, the molecular link between these two structures remains elusive. Here we describe a previously uncharacte...
متن کاملThe dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos
BACKGROUND During metazoan development, cell diversity arises primarily from asymmetric cell divisions which are executed in two phases: segregation of cytoplasmic factors and positioning of the mitotic spindle - and hence the cleavage plane -relative to the axis of segregation. When polarized cells divide, spindle alignment probably occurs through the capture and subsequent shortening of astra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Traffic
دوره 9 4 شماره
صفحات -
تاریخ انتشار 2008